4-Hydroxynonenal-induced GPR109A (HCA2 receptor) activation elicits bipolar responses, Gαi -mediated anti-inflammatory effects and Gβγ -mediated cell death

4-羟基壬烯醛诱导的 GPR109A(HCA2 受体)激活可引发双极反应、Gαi 介导的抗炎作用和 Gβγ 介导的细胞死亡

阅读:7
作者:Jaya Gautam, Suhrid Banskota, Sajita Shah, Jun-Goo Jee, Eunju Kwon, Ying Wang, Dong Young Kim, Hyun Wook Chang, Jung-Ae Kim

Background and purpose

In this study, we examined the possibility that 4-hydroxynonenal (4-HNE) acting as a ligand for the HCA2 receptor (GPR109A) elicits both anti-inflammatory and cell death responses. Experimental approach: Agonistic activity of 4-HNE was determined by observing the inhibition of cAMP generation in CHO-K1-GPR109A-Gi cell line, using surface plasmon resonance (SPR) binding and competition binding assays with [3 H]-niacin. 4-HNE-mediated signalling pathways and cellular responses were investigated in cells expressing GPR109A and those not expressing these receptors. Key

Purpose

In this study, we examined the possibility that 4-hydroxynonenal (4-HNE) acting as a ligand for the HCA2 receptor (GPR109A) elicits both anti-inflammatory and cell death responses. Experimental approach: Agonistic activity of 4-HNE was determined by observing the inhibition of cAMP generation in CHO-K1-GPR109A-Gi cell line, using surface plasmon resonance (SPR) binding and competition binding assays with [3 H]-niacin. 4-HNE-mediated signalling pathways and cellular responses were investigated in cells expressing GPR109A and those not expressing these receptors. Key

Results

Agonistic activity of 4-HNE was stronger than that of niacin or 3-OHBA at inhibiting forskolin-induced cAMP production and SPR binding affinity. In ARPE-19 and CCD-841 cells, activation of GPR109A by high concentrations of the agonists 4-HNE (≥10 μM), niacin (≥1000 μM) and 3-OHBA (≥1000 μM) induced apoptosis accompanied by elevated Ca2+ and superoxide levels. This 4-HNE-induced cell death was blocked by knockdown of GPR109A or NOX4 genes, or treatment with chemical inhibitors of Gβγ (gallein), intracellular Ca2+ (BAPTA-AM), NOX4 (VAS2870) and JNK (SP600125), but not by the cAMP analogue 8-CPT-cAMP. By contrast, low concentrations of 4-HNE, niacin and 3-OHBA down-regulated the expression of pro-inflammatory cytokines IL-6 and IL-8. These 4-HNE-induced inhibitory effects were blocked by a cAMP analogue but not by inhibitors of Gβγ -downstream signalling molecules. Conclusions and implications: These results revealed that 4-HNE is a strong agonist for GPR109A that induces Gαi -dependent anti-inflammatory and Gβγ -dependent cell death responses. Moreover, the findings indicate that specific intracellular signalling molecules, but not GPR109A, can serve as therapeutic targets to block 4-HNE-induced cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。