Exendin-4 alleviates steatosis in an in vitro cell model by lowering FABP1 and FOXA1 expression via the Wnt/-catenin signaling pathway

Exendin-4 通过 Wnt/-catenin 信号通路降低 FABP1 和 FOXA1 表达,从而缓解体外细胞模型中的脂肪变性

阅读:8
作者:Olfa Khalifa, Neyla S Al-Akl, Khaoula Errafii, Abdelilah Arredouani

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Agonists of the glucagon-like peptide-1 receptor (GLP-1R), currently approved to treat type 2 diabetes, hold promise to improve steatosis and even steatohepatitis. However, due to their pleiotropic effects, the mechanisms underlying their protective effect on NAFLD remain elusive. We aimed to investigate these mechanisms using an in vitro model of steatosis treated with the GLP-1R agonist Exendin-4 (Ex-4). We established steatotic HepG2 cells by incubating the cells with 400 µM oleic acid (OA) overnight. Further treatment with 200 nM Ex-4 for 3 h significantly reduced the OA-induced lipid accumulation (p < 0.05). Concomitantly, Ex-4 substantially reduced the expression levels of Fatty Acid-Binding Protein 1 (FABP1) and its primary activator, Forkhead box protein A1 (FOXA1). Interestingly, the silencing of β-catenin with siRNA abolished the effect of Ex-4 on these genes, suggesting dependency on the Wnt/β-catenin pathway. Additionally, after β-catenin silencing, OA treatment significantly increased the expression of nuclear transcription factors SREBP-1 and TCF4, whereas Ex-4 significantly decreased this upregulation. Our findings suggest that direct activation of GLP-1R by Ex-4 reduces OA-induced steatosis in HepG2 cells by reducing fatty acid uptake and transport via FABP1 downregulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。