Single-cell gene profiling defines differential progenitor subclasses in mammalian neurogenesis

单细胞基因分析定义了哺乳动物神经发生中的差异祖细胞亚类

阅读:4
作者:Ayano Kawaguchi, Tomoko Ikawa, Takeya Kasukawa, Hiroki R Ueda, Kazuki Kurimoto, Mitinori Saitou, Fumio Matsuzaki

Abstract

Cellular diversity of the brain is largely attributed to the spatial and temporal heterogeneity of progenitor cells. In mammalian cerebral development, it has been difficult to determine how heterogeneous the neural progenitor cells are, owing to dynamic changes in their nuclear position and gene expression. To address this issue, we systematically analyzed the cDNA profiles of a large number of single progenitor cells at the mid-embryonic stage in mouse. By cluster analysis and in situ hybridization, we have identified a set of genes that distinguishes between the apical and basal progenitors. Despite their relatively homogeneous global gene expression profiles, the apical progenitors exhibit highly variable expression patterns of Notch signaling components, raising the possibility that this causes the heterogeneous division patterns of these cells. Furthermore, we successfully captured the nascent state of basal progenitor cells. These cells are generated shortly after birth from the division of the apical progenitors, and show strong expression of the major Notch ligand delta-like 1, which soon fades away as the cells migrate in the ventricular zone. We also demonstrated that attenuation of Notch signals immediately induces differentiation of apical progenitors into nascent basal progenitors. Thus, a Notch-dependent feedback loop is likely to be in operation to maintain both progenitor populations.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。