Microscale dynamics promote segregated denitrification in diatom aggregates sinking slowly in bulk oxygenated seawater

微尺度动力学促进在大量含氧海水中缓慢下沉的硅藻聚集体中的分离反硝化

阅读:5
作者:Davide Ciccarese, Omar Tantawi, Irene H Zhang, Desiree Plata, Andrew R Babbin

Abstract

Sinking marine particles drive the biological pump that naturally sequesters carbon from the atmosphere. Despite their small size, the compartmentalized nature of particles promotes intense localized metabolic activity by their bacterial colonizers. Yet the mechanisms promoting the onset of denitrification, a metabolism that arises once oxygen is limiting, remain to be established. Here we show experimentally that slow sinking aggregates composed of marine diatoms-important primary producers for global carbon export-support active denitrification even among bulk oxygenated water typically thought to exclude anaerobic metabolisms. Denitrification occurs at anoxic microsites distributed throughout a particle and within microns of a particle's boundary, and fluorescence-reporting bacteria show nitrite can be released into the water column due to segregated dissimilatory reduction of nitrate and nitrite. Examining intact and broken diatoms as organic sources, we show slowly leaking cells promote more bacterial growth, allow particles to have lower oxygen, and generally support greater denitrification.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。