Dexmedetomidine protects against sepsis‑associated encephalopathy through Hsp90/AKT signaling

右美托咪啶通过 Hsp90/AKT 信号传导预防脓毒症相关脑病

阅读:4
作者:Lijun Yin, Xuejun Chen, Hongbo Ji, Shunli Gao

Abstract

Sepsis‑associated encephalopathy (SAE) is characterized by neuronal apoptosis and changes in mental status. Accumulating evidence has. indicated that dexmedetomidine is capable of protecting the brain against external stimuli and improving cognitive dysfunctions. The aim of the present study was to investigate the possible neuroprotective effects of dexmedetomidine on SAE and the role of heat‑shock protein (Hsp)90/AKT signaling in an experimental model of sepsis. The SAE model was established by cecal ligation and perforation (CLP) in vivo and lipopolysaccharide (LPS) treated hippocampal neuronal cultures in vitro. It was found that dexmedetomidine inhibited caspase‑3, but increased the expression level ofBcl‑2 in CLP rats. CLP rats also exhibited a decreased level of phosphorylated AKT Thr 308 and Hsp90, and their expression could be reversed by treatment with dexmedetomidine. Additionally, application of dexmedetomidine increased cell survival and decreased neuronal apoptosis in vitro. Furthermore, the neuroprotective effects of dexmedetomidine could be reversed by 17‑AAG (a Hsp90 inhibitor), or wortmannin (a PI3K inhibitor). Analysis of TUNEL staining indicated that dexmedetomidine improved LPS‑induced neuronal apoptosis, which could be eradicated by AKT short hairpin RNA transfection, prazosin or yohimbine. Finally, dexmedetomidine ameliorated both the emotional and spatial cognitive disorders without alteration in locomotor activity. The present findings suggested that dexmedetomidine may protect the brain against SAE, and that the Hsp90/AKT pathway may be involved in this process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。