Optimized Anti-Prostate-Specific Membrane Antigen Single-Chain Variable Fragment-Loaded Nanobubbles as a Novel Targeted Ultrasound Contrast Agent for the Diagnosis of Prostate Cancer

优化的抗前列腺特异性膜抗原单链可变片段负载纳米气泡作为诊断前列腺癌的新型靶向超声造影剂

阅读:10
作者:Yu Ding, Qifeng Cao, Subo Qian, Xiaolong Chen, Yuhong Xu, Jian Chen, Haibo Shen

Conclusions

These novel PSMA scFv-loaded NBs have proven to be an excellent US contrast agent for imaging PSMA-expressing PCa and have the potential to not only enable efficient and safe molecular imaging but also to serve as a delivery system for targeted PCa therapies.

Methods

Prostate-specific membrane antigen scFv-loaded NBs were prepared by membrane hydration and biotin-streptavidin conjugation. Flow cytometry was used to observe the binding rate of the targeted NBs to PSMA-expressing cells. Contrast-enhanced US was used to monitor targeted and nontargeted NBs administered to nude mice with 22RV1, LNCaP, and PC-3 xenograft tumors. The specific binding ability of the targeted NBs was further examined by fluorescence imaging of tumor cryosections.

Results

Uniformly sized targeted NBs were successfully prepared (mean ± SD, 485.3 ± 28.4 nm). The NBs showed good stability and bound specifically to LNCaP and 22RV1 cells with high PSMA expression in vitro but did not bind to PC-3 cells without PSMA expression. The targeted NBs presented good US enhancement, and the results of the in vivo xenograft tumor nude mouse model showed that the peak contrast intensity in LNCaP and 22RV1 cells was significantly higher for the targeted NBs than the nontargeted NBs (P < .05), whereas there was no significant difference in PC-3 cells. Immunofluorescence results obtained from tumor sections confirmed that the targeted NBs were capable of targeting PSMA-expressing tumor cells. Conclusions: These novel PSMA scFv-loaded NBs have proven to be an excellent US contrast agent for imaging PSMA-expressing PCa and have the potential to not only enable efficient and safe molecular imaging but also to serve as a delivery system for targeted PCa therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。