A Novel Biological Role for Peptidyl-Arginine Deiminases: Citrullination of Cathelicidin LL-37 Controls the Immunostimulatory Potential of Cell-Free DNA

肽基精氨酸脱亚氨酶的新型生物学作用:Cathelicidin LL-37 的瓜氨酸化可控制游离 DNA 的免疫刺激潜力

阅读:6
作者:Alicia Wong, Danuta Bryzek, Ewelina Dobosz, Carsten Scavenius, Pavel Svoboda, Maria Rapala-Kozik, Adam Lesner, Ivo Frydrych, Jan Enghild, Piotr Mydel, Jan Pohl, Paul R Thompson, Jan Potempa, Joanna Koziel

Abstract

LL-37, the only human cathelicidin that is released during inflammation, is a potent regulator of immune responses by facilitating delivery of oligonucleotides to intracellular TLR-9, thereby enhancing the response of human plasmacytoid dendritic cells (pDCs) to extracellular DNA. Although important for pathogen recognition, this mechanism may facilitate development of autoimmune diseases. In this article, we show that citrullination of LL-37 by peptidyl-arginine deiminases (PADs) hindered peptide-dependent DNA uptake and sensing by pDCs. In contrast, carbamylation of the peptide (homocitrullination of Lys residues) had no effect. The efficiency of LL-37 binding to oligonucleotides and activation of pDCs was found to be inversely proportional to the number of citrullinated residues in the peptide. Similarly, preincubation of carbamylated LL-37 with PAD2 abrogated the peptide's ability to bind DNA. Conversely, LL-37 with Arg residues substituted by homoarginine, which cannot be deiminated, elicited full activity of native LL-37 regardless of PAD2 treatment. Taken together, the data showed that citrullination abolished LL-37 ability to bind DNA and altered the immunomodulatory function of the peptide. Both activities were dependent on the proper distribution of guanidinium side chains in the native peptide sequence. Moreover, our data suggest that cathelicidin/LL-37 is citrullinated by PADs during NET formation, thus affecting the inflammatory potential of NETs. Together this may represent a novel mechanism for preventing the breakdown of immunotolerance, which is dependent on the response of APCs to self-molecules (including cell-free DNA); overactivation may facilitate development of autoimmunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。