Neuroprotective Effects of Omentin-1 Against Cerebral Hypoxia/Reoxygenation Injury via Activating GAS6/Axl Signaling Pathway in Neuroblastoma Cells

Omentin-1通过激活GAS6/Axl信号通路对神经母细胞瘤细胞中脑缺氧/复氧损伤的神经保护作用

阅读:5
作者:Xiaochen Niu, Ye Cheng, Meng Zhang, Luyang Du, Xue Wu, Chenxi Lu, Xiyang Li, Shuai Liu, Aizhen Zhao, Shaofei Zhang, Zhen Wu, Baoping Ding, Wenzhen Shi, Changyu Wang, Yang Yang, Ye Tian

Abstract

Ischemic stroke is characterized by insufficient blood supply to brain tissue and is associated with increased morbidity and mortality in adults worldwide. Growth arrest-specific protein 6 (GAS6) is a vitamin K-dependent protein and is widely expressed in the central nervous system. The biological functions of GAS6 are mediated by the interaction with TAM (Tyro3, Axl and Mertk) receptors, including cell survival and proliferation, immune regulation and apoptosis. Omentin-1, also known as intelectin-1 (ITLN-1), is a novel adipocytokine that is involved in a variety of biological events, such as insulin resistance, endothelial dysfunction, programmed cell death and metabolic disorders. Our previous study has found that omentin-1 act as a novel regulator of vascular and anti-apoptotic response in cerebral ischemia. However, the specific molecular mechanism of omentin-1's protective effect on cerebral ischemia-reperfusion injury (IRI) is still unclear. First, the toxicity of recombinant human omentin-1 (rh-omentin) was assessed and a safe concentration was chosen for the next experiments. Then, rh-omentin exerted neuroprotection against hypoxia/reoxygenation (H/R) injury in N2a cells, indicated by increased cell viability, decreased LDH, ROS generation, and cell apoptotic rate. Furthermore, the similar protective effect was observed in omentin-1 overexpression cells constructed by lentivirus transfection. Rh-omentin could also inhibit H/R-induced apoptotic molecules, oxidative stress molecules, and GAS6/Axl signaling molecules which as evidence by increased omentin-1, GAS6, Axl, p-Axl, NQO1, HO-1, Nrf2, Bcl2 and decreased Bax expressions. However, GAS6 siRNA could reverse rh-omentin-induced neuroprotection and the levels of these molecules mentioned above. In conclusion, these findings suggest that omentin-1 treatment exerts neuroprotection against H/R injury partly via activating GAS6/Axl signaling at least. Therefore, these finding may favor omentin-1 a potential neuroprotective drug candidate to alleviate ischemia-reperfusion injury in clinic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。