Nicotinamide phosphoribosyltransferase‑related signaling pathway in early Alzheimer's disease mouse models

早期阿尔茨海默病小鼠模型中的烟酰胺磷酸核糖基转移酶相关信号通路

阅读:7
作者:Sanli Xing, Yiran Hu, Xujiao Huang, Dingzhu Shen, Chuan Chen

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that is characterized by progressive cognitive dysfunction and which ultimately leads to dementia. Studies have shown that energy dysmetabolism contributes significantly to the pathogenesis of a variety of aging‑associated diseases and degenerative diseases of the nervous system, including AD. One focus of research thus has been how to regulate the expression of nicotinamide phosphoribosyltransferase (NAMPT) to prevent against neurodegenerative diseases. Therefore, the present study used 6‑month‑old APPswe/PS1ΔE9 (APP/PS1) transgenic mice as early AD mouse models and sought to evaluate nicotinamide adenine dinucleotide (NAD+) and FK866 (a NAMPT inhibitor) treatment in APP/PS1 mice to study NAMPT dysmetabolism in the process of AD and elucidate the underlying mechanisms. As a result of this treatment, the expression of NAMPT decreased, the synthesis of ATP and NAD+ became insufficient and the NAD+/NADH ratio was reduced. The administration of NAD+ alleviated the spatial learning and memory of APP/PS1 mice and reduced senile plaques. Administration of NAD+ may also increase the expression of the key protein NAMPT and its related protein sirtuin 1 as well as the synthesis of NAD+. Therefore, increasing NAMPT expression levels may promote NAD+ production. Their regulation could form the basis for a new therapeutic strategy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。