A Self-Assembling Ferritin Nanoplatform for Designing Classical Swine Fever Vaccine: Elicitation of Potent Neutralizing Antibody

用于设计猪瘟疫苗的自组装铁蛋白纳米平台:引发强效中和抗体

阅读:9
作者:Zekai Zhao, Xinghua Chen, Yibao Chen, Hui Li, Kui Fang, Huanchun Chen, Xiangmin Li, Ping Qian

Abstract

Protein-based self-assembling nanoplatforms exhibit superior immunogenicity compared with soluble antigens. Here, we present a comprehensive vaccine strategy for displaying classical swine fever virus (CSFV) E2 glycoprotein on the surface of ferritin (fe) nanocages. An E2-specific blocking antibody assay showed that the blocking rates in pE2-fe/Gel02 (84.3%) and a half-dose cohort of E2-fe/Gel02 (81.9%) were significantly higher (p < 0.05) than that in a ferritin-free cohort of pE2/Gel02 (62.7%) at 21 days post immunization (dpi) in vivo. Furthermore, quantitation of neutralizing potency revealed that a highly significant difference (p < 0.001) was observed between the pE2-fe/Gel02 cohort (1:32, equivalent to live-attenuated strain C at 1:32) and the pE2/Gel02 cohort (1:4) at 21 dpi. Moreover, the innate immune cytokines of IL-4 and IFN-γ activated by the half-dose (20 μg) cohort of E2-fe/Gel02 were equivalent to those elicited by the full dose (40 μg) of purified E2 in the pE2/Gel02 cohort at most time points. In conclusion, we successfully obtained an antigen-displaying E2-ferritin nanoplatform and confirmed high ferritin-assisted humoral and cellular immunities. Our results provided a novel paradigm of self-assembling nanovaccine development for the defense and elimination of potentially pandemic infectious viral pathogens.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。