High glucose inhibits osteogenic differentiation and proliferation of MC3T3‑E1 cells by regulating P2X7

高糖通过调控P2X7抑制MC3T3‑E1细胞成骨分化与增殖

阅读:10
作者:Jinsan Yang, Cao Ma, Maoshu Zhang

Abstract

Diabetes mellitus adversely affects human bones and increases the risk of developing osteoporosis. In the present study, treatment with 30 mmol/l glucose was used to establish a high glucose (HG) cell model in vitro. Plasmids were used to overexpress the P2X purinoceptor 7 (P2X7) gene. Brilliant blue G and (4‑benzoyl‑benzoyl)‑ATP were used as a P2X7 antagonist and agonist, respectively. Proliferation of osteogenic MC3T3‑E1 cells and alkaline phosphatase (ALP) activity were determined using MTT and colorimetric assays, respectively. Alizarin Red S was used to assess calcification of MC3T3‑E1 cells. Western blotting and reverse transcription‑quantitative PCR were performed to determine protein and mRNA expression levels. The results demonstrated that HG inhibited MC3T3‑E1 cell proliferation and P2X7 expression, reduced calcification, and downregulated the expression levels of ALP and osteocalcin (Ocn) in MC3T3‑E1 cells. Overexpression of P2X7 in HG conditions increased calcification and proliferation, and upregulated the levels of ALP and Ocn in MC3T3‑E1 cells. Inhibition of P2X7 downregulated the expressions of ALP and Ocn in MC3T3‑E1 cells under HG conditions. Therefore, the present results indicated that HG caused damage to osteogenic MC3T3‑E1 cells. Thus, P2X7 may be a regulatory factor that may be used to counteract the effects of HG on osteogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。