Mechanical phenotyping reveals unique biomechanical responses in retinoic acid-resistant acute promyelocytic leukemia

机械表型揭示了视黄酸耐药急性早幼粒细胞白血病的独特生物力学反应

阅读:4
作者:Brian Li, Annie Maslan, Sean E Kitayama, Corinne Pierce, Aaron M Streets, Lydia L Sohn

Abstract

All-trans retinoic acid (ATRA) is an essential therapy in the treatment of acute promyelocytic leukemia (APL), but nearly 20% of patients with APL are resistant to ATRA. As there are no biomarkers for ATRA resistance that yet exist, we investigated whether cell mechanics could be associated with this pathological phenotype. Using mechano-node-pore sensing, a single-cell mechanical phenotyping platform, and patient-derived APL cell lines, we discovered that ATRA-resistant APL cells are less mechanically pliable. By investigating how different subcellular components of APL cells contribute to whole-cell mechanical phenotype, we determined that nuclear mechanics strongly influence an APL cell's mechanical response. Moreover, decondensing chromatin with trichostatin A is especially effective in softening ATRA-resistant APL cells. RNA-seq allowed us to compare the transcriptomic differences between ATRA-resistant and ATRA-responsive APL cells and highlighted gene expression changes that could be associated with mechanical changes. Overall, we have demonstrated the potential of "physical" biomarkers in identifying APL resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。