Biliverdin reductase deficiency triggers an endothelial-to-mesenchymal transition in human endothelial cells

胆绿素还原酶缺乏引发人类内皮细胞内皮-间质转化

阅读:6
作者:Damian Klóska, Aleksandra Kopacz, Aleksandra Piechota-Polańczyk, Christoph Neumayer, Ihor Huk, Józef Dulak, Alicja Józkowicz, Anna Grochot-Przęczek

Abstract

Endothelial dysfunction accompanied by the loss of endothelial cell phenotype plays an essential role in cardiovascular diseases. Here, we report that knockdown of biliverdin reductase (BVR), the enzyme of the heme degradation pathway converting biliverdin to bilirubin, shifts endothelial phenotype of the primary human aortic endothelial cells (HAECs) to mesenchymal-like one. It is reflected by the loss of endothelial markers and angiogenic response, with concomitant acquiring of mesenchymal markers, increased migratory capacity and metalloproteinase activity. BVR-deficiency induces the activity of Nrf2 transcription factor and increases heme oxygenase-1 (HO-1) level, which is accompanied by the reduction of cellular heme content, increase in a free iron fraction and oxidative stress. Accordingly, the phenotype of BVR-deficient cells can be mimicked by hemin or iron overload. Depletion of HO-1 in BVR-deficient ECs abrogates the increase in intracellular free iron and oxidative stress, preventing the loss of endothelial markers. Treatment of BVR-deficient cells with bilirubin does not rescue the endothelial phenotype of HAECs. Unlike BLVRA mRNA level, the expression of HMOX1, HMOX1:BLVRA ratio and HO-1 protein level positively correlate with abdominal aortic aneurysm size in clinical samples. Collectively, the non-enzymatic activity of BVR contributes to the maintenance of healthy endothelial phenotype through the prevention of HO-1-dependent iron-overload, oxidative stress and subsequent endothelial-to-mesenchymal transition (EndMT).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。