KIF15 supports spermatogenesis via its effects on Sertoli cell microtubule, actin, vimentin, and septin cytoskeletons

KIF15 通过对塞托利细胞微管、肌动蛋白、波形蛋白和隔膜细胞骨架的影响来支持精子发生

阅读:4
作者:Siwen Wu, Lixiu Lv, Linxi Li, Lingling Wang, Baiping Mao, Jun Li, Xian Shen, Renshan Ge, Chris K C Wong, Fei Sun, C Yan Cheng

Abstract

Throughout spermatogenesis, cellular cargoes including haploid spermatids are required to be transported across the seminiferous epithelium, either toward the microtubule (MT) plus (+) end near the basement membrane at stage V, or to the MT minus (-) end near the tubule lumen at stages VI to VIII of the epithelial cycle. Furthermore, preleptotene spermatocytes, differentiated from type B spermatogonia, are transported across the Sertoli cell blood-testis barrier (BTB) to enter the adluminal compartment. Few studies, however, have been conducted to explore the function of MT-dependent motor proteins to support spermatid transport during spermiogenesis. Herein, we examined the role of MT-dependent and microtubule plus (+) end-directed motor protein kinesin 15 (KIF15) in the testis. KIF15 displayed a stage-specific expression across the seminiferous epithelium, associated with MTs, and appeared as aggregates on the MT tracks that aligned perpendicular to the basement membrane and laid across the entire epithelium. KIF15 also tightly associated with apical ectoplasmic specialization, displaying strict stage-specific distribution, apparently to support spermatid transport across the epithelium. We used a loss-of-function approach by RNAi to examine the role of KIF15 in Sertoli cell epithelium in vitro to examine its role in cytoskeletal-dependent Sertoli cell function. It was noted that KIF15 knockdown by RNAi that reduced KIF15 expression by ~70% in Sertoli cells with an established functional tight junction barrier impeded the barrier function. This effect was mediated through remarkable changes in the cytoskeletal organization of MTs, but also actin-, vimentin-, and septin-based cytoskeletons, illustrating that KIF15 exerts its regulatory effects well beyond microtubules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。