Blockade of angiotensin AT1 receptors prevents arterial remodelling and stiffening in iron-overloaded rats

阻断血管紧张素 AT1 受体可防止铁过载大鼠的动脉重塑和硬化

阅读:6
作者:Helbert Gabriel Fidelis, Jandinay Gonzaga Alexandre Mageski, Susana Curry Evangelista Goes, Tatiani Botelho, Vinicius Bermond Marques, Renata Andrade Ávila, Leonardo Dos Santos

Background and purpose

Damage to the vasculature caused by chronic iron-overload in both humans and animal models, is characterized by endothelial dysfunction and reduced compliance. In vitro, blockade of the angiotensin II AT1 receptors reversed functional vascular changes induced by chronic iron-overload. In this study, the effect of chronic AT1 receptor blockade on aorta stiffening was assessed in iron-overloaded rats. Experimental approach: Male Wistar rats were treated for 15 days with saline as control group, iron dextran 200 mg·kg-1 ·day-1 , 5 days a week (iron-overload group), losartan (20 mg·kg-1 ·day-1 in drinking water), and iron dextran plus losartan. Mechanical properties of the aorta were assessed in vivo. In vitro, aortic geometry and biochemical composition were assessed with morphometric and histological

Purpose

Damage to the vasculature caused by chronic iron-overload in both humans and animal models, is characterized by endothelial dysfunction and reduced compliance. In vitro, blockade of the angiotensin II AT1 receptors reversed functional vascular changes induced by chronic iron-overload. In this study, the effect of chronic AT1 receptor blockade on aorta stiffening was assessed in iron-overloaded rats. Experimental approach: Male Wistar rats were treated for 15 days with saline as control group, iron dextran 200 mg·kg-1 ·day-1 , 5 days a week (iron-overload group), losartan (20 mg·kg-1 ·day-1 in drinking water), and iron dextran plus losartan. Mechanical properties of the aorta were assessed in vivo. In vitro, aortic geometry and biochemical composition were assessed with morphometric and histological

Results

Thoracoabdominal aortic pulse wave velocity (PWV) increased significantly, indicating a decrease in aortic compliance. Co-treatment with losartan prevented changes on PWV, β-index, and elastic modulus in iron-overloaded rats. This iron-related increase in PWV was not related to changes in aortic geometry and wall stress. but to increased elastic modulus/wall stress ratio, suggesting that a change in the composition of the wall was responsible for the stiffness. Losartan treatment also ameliorated the increase in aorta collagen content of the iron-overload group, without affecting circulating iron or vascular deposits. Conclusions and implications: Losartan prevented the structural and functional indices of aortic stiffness in iron-overloaded rats, implying that inhibition of the renin-angiotensin system would limit the vascular remodelling in chronic iron-overload.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。