Spinal microglia-derived TNF promotes the astrocytic JNK/CXCL1 pathway activation in a mouse model of burn pain

脊髓小胶质细胞衍生的 TNF 促进小鼠烧伤疼痛模型中星形胶质细胞 JNK/CXCL1 通路激活

阅读:5
作者:Run Zhang, Biao Xu, Nan Zhang, Jiandong Niu, Mengna Zhang, Qinqin Zhang, Dan Chen, Yonghang Shi, Danni Chen, Kedi Liu, Xiaodi Zhang, Ning Li, Quan Fang

Abstract

Burn injury-induced pain (BIP) is an extremely complicated condition usually resistant to analgesic drugs, while its pathogenesis remains unknown. Considerable attention has been attracted to elucidate the glial mechanisms in chronic pain. In this study, we initiatively used a mouse model of second-degree BIP to investigate the underlying non-neuronal mechanisms at the spinal cord level. Our behavioral results showed that hind-paw burn injury caused persistent allodynia and hyperalgesia for 2 weeks in mice. Further studies revealed that both microglia and astrocytes activated in a spatially- and temporally-dependent manner in spinal cord after burn injury. In addition, the phosphorylated p38 mitogen-activated protein kinase (MAPK)-mediated tumor necrosis factor (TNF) release in spinal microglia is essentially attributed to the early stage of BIP, while the c-Jun N-terminal kinase (JNK) MAPK-dependent chemokine CXCL1 expression is mainly involved in the maintenance of pain hypersensitivity. Most strikingly, burn injury-induced pain symptoms and the activation of astrocytes were significantly suppressed by TNF inhibitor Thalidomide. On the contrary, intrathecal injection of TNF caused apparent pain hypersensitivity, accompanied by the activation of astrocytes and the upregulation of CXCL1 via the JNK MAPK signaling pathway, indicating that TNF is the key cytokine in the interaction between microglia and astrocytes at the spinal level. Moreover, treatment with the CXCR2 receptor antagonist SB225002 to block the biological activities of CXCL1 significantly attenuated the mechanical allodynia and thermal hyperalgesia in this BIP model. Taken together, this study indicates that intervention of glial pathways provides a new perspective in the management of BIP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。