Hdac3 regulates bone modeling by suppressing osteoclast responsiveness to RANKL

Hdac3 通过抑制破骨细胞对 RANKL 的反应来调节骨骼建模

阅读:7
作者:David H H Molstad, Anna M Mattson, Dana L Begun, Jennifer J Westendorf, Elizabeth W Bradley

Abstract

Hdac3 is a lysine deacetylase that removes acetyl groups from histones and additional proteins. Although Hdac3 functions within mesenchymal lineage skeletal cells are defined, little is known about Hdac3 activities in bone-resorbing osteoclasts. In this study we conditionally deleted Hdac3 within Ctsk-expressing cells and examined the effects on bone modeling and osteoclast differentiation in mice. Hdac3 deficiency reduced femur and tibia periosteal circumference and increased cortical periosteal osteoclast number. Trabecular bone was likewise reduced and was accompanied by increased osteoclast number per trabecular bone surface. We previously showed that Hdac3 deacetylates the p65 subunit of the NF-κB transcriptional complex to decrease DNA-binding and transcriptional activity. Hdac3-deficient osteoclasts demonstrate increased K310 NF-κB acetylation and NF-κB transcriptional activity. Hdac3-deficient osteoclast lineage cells were hyper-responsive to RANKL and showed elevated ex vivo osteoclast number and size and enhanced bone resorption in pit formation assays. Osteoclast-directed Hdac3 deficiency decreased cortical and trabecular bone mass parameters, suggesting that Hdac3 regulates coupling of bone resorption and bone formation. We surveyed a panel of osteoclast-derived coupling factors and found that Hdac3 suppression diminished sphingosine-1-phosphate production. Osteoclast-derived sphingosine-1-phosphate acts in paracrine to promote bone mineralization. Mineralization of WT bone marrow stromal cells cultured with conditioned medium from Hdac3-deficient osteoclasts was markedly reduced. Expression of alkaline phosphatase, type 1a1 collagen, and osteocalcin was also suppressed, but no change in Runx2 expression was observed. Our results demonstrate that Hdac3 controls bone modeling by suppressing osteoclast lineage cell responsiveness to RANKL and coupling to bone formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。