PDGFR-β modulates vascular smooth muscle cell phenotype via IRF-9/SIRT-1/NF-κB pathway in subarachnoid hemorrhage rats

PDGFR-β通过IRF-9/SIRT-1/NF-κB通路调控蛛网膜下腔出血大鼠血管平滑肌细胞表型

阅读:9
作者:Weifeng Wan, Yan Ding, Zongyi Xie, Qian Li, Feng Yan, Enkhjargal Budbazar, William J Pearce, Richard Hartman, Andre Obenaus, John H Zhang, Yong Jiang, Jiping Tang

Abstract

Platelet-derived growth factor receptor-β (PDGFR-β) has been reported to promote phenotypic transformation of vascular smooth muscle cells (VSMCs). The purpose of this study was to investigate the role of the PDGFR-β/IRF9/SIRT-1/NF-κB pathway in VSMC phenotypic transformation after subarachnoid hemorrhage (SAH). SAH was induced using the endovascular perforation model in Sprague-Dawley rats. PDGFR-β small interfering RNA (siRNA) and IRF9 siRNA were injected intracerebroventricularly 48 h before SAH. SIRT1 activator (resveratrol) and inhibitor (EX527) were administered intraperitoneally 1 h after SAH induction. Twenty-four hours after SAH, the VSMC contractile phenotype marker α-smooth muscle actin (α-SMA) decreased, whereas the VSMC synthetic phenotype marker embryonic smooth muscle myosin heavy chain (Smemb) increased. Both PDGFR-β siRNA and IRF9 siRNA attenuated the induction of nuclear factor-κB (NF-κB) and enhanced the expression of α-SMA. The SIRT1 activator (resveratrol) preserved VSMC contractile phenotype, significantly alleviated neurological dysfunction, and reduced brain edema. However, these beneficial effects of PDGFR-β siRNA, IRF9 siRNA and resveratrol were abolished by the SIRT1 inhibitor (EX527). This study shows that PDGFR-β/IRF9/SIRT-1/NF-κB signaling played a role in the VSMC phenotypic transformation after SAH. Inhibition of this signaling cascade preserved the contractile phenotype of VSMCs, thereby improving neurological outcomes following SAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。