Human endothelial colony-forming cells provide trophic support for pluripotent stem cell-derived cardiomyocytes via distinctively high expression of neuregulin-1

人类内皮集落形成细胞通过显著高表达神经调节蛋白-1为多能干细胞衍生的心肌细胞提供营养支持

阅读:7
作者:Xuechong Hong, Nicholas Oh, Kai Wang, Joseph Neumeyer, Chin Nien Lee, Ruei-Zeng Lin, Breanna Piekarski, Sitaram Emani, Arin K Greene, Ingeborg Friehs, Pedro J Del Nido, Juan M Melero-Martin

Abstract

The search for a source of endothelial cells (ECs) with translational therapeutic potential remains crucial in regenerative medicine. Human blood-derived endothelial colony-forming cells (ECFCs) represent a promising source of autologous ECs due to their robust capacity to form vascular networks in vivo and their easy accessibility from peripheral blood. However, whether ECFCs have distinct characteristics with translational value compared to other ECs remains unclear. Here, we show that vascular networks generated with human ECFCs exhibited robust paracrine support for human pluripotent stem cell-derived cardiomyocytes (iCMs), significantly improving protection against drug-induced cardiac injury and enhancing engraftment at ectopic (subcutaneous) and orthotopic (cardiac) sites. In contrast, iCM support was notably absent in grafts with vessels lined by mature-ECs. This differential trophic ability was due to a unique high constitutive expression of the cardioprotective growth factor neuregulin-1 (NRG1). ECFCs, but not mature-ECs, were capable of actively releasing NRG1, which, in turn, reduced apoptosis and increased the proliferation of iCMs via the PI3K/Akt signaling pathway. Transcriptional silencing of NRG1 abrogated these cardioprotective effects. Our study suggests that ECFCs are uniquely suited to support human iCMs, making these progenitor cells ideal for cardiovascular regenerative medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。