Wnt3a suppresses Pseudomonas aeruginosa-induced inflammation and promotes bacterial killing in macrophages

Wnt3a 抑制铜绿假单胞菌引起的炎症并促进巨噬细胞杀死细菌

阅读:6
作者:Kang Chen, Qiang Fu, Dandan Li, Yongjian Wu, Shijun Sun, Xiumin Zhang

Abstract

Pseudomonas aeruginosa (PA) is a common Gram‑negative bacterium and can cause serious infections, including hospital‑acquired pneumonia, suppurative bacterial keratitis and acute burn wound infection. The pathogenesis of PA infections is closely associated with excessive inflammatory responses and bacterial virulence factors. Wingless‑type MMTV integration site family, member 3A (Wnt3a), an upstream mediator in the canonical Wnt signaling pathway, has been implicated as a regulator of inflammation. However, its role in PA‑induced inflammation and bacterial clearance remains unknown. In the present study, the efficacy of Wnt3a conditioned media (Wnt3a‑CM) was assessed using western blotting and immunofluorescence, which showed that β‑catenin, a downstream molecule of Wnt3a, was upregulated and translocated to the nucleus following exposure to 50% Wnt3a‑CM for 6 h. To explore the role of Wnt3a in PA‑induced inflammation, the mRNA levels of pro‑inflammatory cytokines and apoptosis in macrophages were measured using reverse transcription‑quantitative polymerase chain reaction and flow cytometry, respectively. This indicated that Wnt3a suppressed inflammation by reducing the production of pro‑inflammatory cytokines and by promoting apoptosis in macrophages. Furthermore, the mechanism of macrophage‑mediated bacterial killing was investigated, and the results indicated that Wnt3a enhanced macrophage‑mediated intracellular bacterial killing via the induction of the production of cathelicidin‑related antimicrobial peptide and β‑defensins 1. Taken together, the current study explored the role of Wnt3a in inflammation and bacterial invasion, which may provide an improved understanding of host resistance to PA infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。