Blocking the human common beta subunit of the GM-CSF, IL-5 and IL-3 receptors markedly reduces hyperinflammation in ARDS models

阻断人类 GM-CSF、IL-5 和 IL-3 受体的共同 β 亚基可显著降低 ARDS 模型中的过度炎症

阅读:5
作者:Hao Wang, Damon J Tumes, Timothy R Hercus, K H Yip, Christian Aloe, Ross Vlahos, Angel F Lopez, Nick Wilson, Catherine M Owczarek, Steven Bozinovski

Abstract

Acute respiratory distress syndrome (ARDS) is triggered by various aetiological factors such as trauma, sepsis and respiratory viruses including SARS-CoV-2 and influenza A virus. Immune profiling of severe COVID-19 patients has identified a complex pattern of cytokines including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-5, which are significant mediators of viral-induced hyperinflammation. This strong response has prompted the development of therapies that block GM-CSF and other cytokines individually to limit inflammation related pathology. The common cytokine binding site of the human common beta (βc) receptor signals for three inflammatory cytokines: GM-CSF, IL-5 and IL-3. In this study, βc was targeted with the monoclonal antibody (mAb) CSL311 in engineered mice devoid of mouse βc and βIL-3 and expressing human βc (hβcTg mice). Direct pulmonary administration of lipopolysaccharide (LPS) caused ARDS-like lung injury, and CSL311 markedly reduced lung inflammation and oedema, resulting in improved oxygen saturation levels in hβcTg mice. In a separate model, influenza (HKx31) lung infection caused viral pneumonia associated with a large influx of myeloid cells into the lungs of hβcTg mice. The therapeutic application of CSL311 potently decreased accumulation of monocytes/macrophages, neutrophils, and eosinophils without altering lung viral loads. Furthermore, CSL311 treatment did not limit the viral-induced expansion of NK and NKT cells, or the tissue expression of type I/II/III interferons needed for efficient viral clearance. Simultaneously blocking GM-CSF, IL-5 and IL-3 signalling with CSL311 may represent an improved and clinically applicable strategy to reducing hyperinflammation in the ARDS setting.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。