Acquired temozolomide resistance in MGMTlow gliomas is associated with regulation of homologous recombination repair by ROCK2

MGMTlow 胶质瘤获得性替莫唑胺耐药与 ROCK2 调节同源重组修复有关

阅读:5
作者:Xin Zhang #, Tao Li #, Mengdi Yang, Qianming Du, Rui Wang, Bin Fu, Yingying Tan, Mengran Cao, Yaxin Chen, Qing Wang, Rong Hu

Abstract

It was reported that MGMTlow gliomas may still be resistant to TMZ, while the mechanisms remain poorly understood. In this study, we demonstrated that rho-associated kinase 2 (ROCK2), a cytoskeleton regulator, was highly expressed in MGMTlow recurrent gliomas, and its expression strongly correlated with poor overall survival (OS) time in a subset of MGMTlow recurrent gliomas patients with TMZ therapy. And we also found that overactive ROCK2 enhanced homologous recombination repair (HR) in TMZ-resistant (TMZ-R) glioma cell lines with low MGMT expression. Silencing ROCK2 impaired HR repair, and induced double-strand break (DSB) and eradicated TMZ-R glioma cells in culture. Notably, in MGMTlow TMZ-R models, as a key factor of HR, ataxia telangiectasia-mutated (ATM) expression was upregulated directly by hyper-activation of ROCK2 to improve HR efficiency. ROCK2 enhanced the binding of transcription factor zinc finger E-box binding homeobox 1 (ZEB1) to ATM promoter for increasing ATM expression. Moreover, ROCK2 transformed ZEB1 into a gene activator via Yes-associated protein 1 (YAP1). These results provide evidence for the use of ROCK inhibitors in the clinical therapy for MGMTlow TMZ-resistant glioma. Our study also offered novel insights for improving therapeutic management of MGMTlow gliomas.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。