Potassium Dehydroandrograpolide Succinate Targets NRP1 Mediated VEGFR2/VE-Cadherin Signaling Pathway to Promote Endothelial Barrier Repair

脱氢穿心莲内酯琥珀酸钾靶向NRP1介导的VEGFR2 / VE-钙粘蛋白信号通路促进内皮屏障修复

阅读:5
作者:Zheng Wang, Xiao Wu, Jiali Li, Qiru Guo, Zhong Jin, Hongfei Li, Bing Liang, Wangming Hu, Huan Xu, Liangqin Shi, Lan Yang, Yong Wang

Abstract

Impairment of vascular endothelial integrity is associated with various vascular diseases. Our previous studies demonstrated that andrographolide is critical to maintaining gastric vascular homeostasis, as well as to regulating pathological vascular remodeling. Potassium dehydroandrograpolide succinate (PDA), a derivative of andrographolide, has been clinically used for the therapeutic treatment of inflammatory diseases. This study aimed to determine whether PDA promotes endothelial barrier repair in pathological vascular remodeling. Partial ligation of the carotid artery in ApoE-/- mice was used to evaluate whether PDA can regulate pathological vascular remodeling. A flow cytometry assay, BRDU incorporation assay, Boyden chamber cell migration assay, spheroid sprouting assay and Matrigel-based tube formation assay were performed to determine whether PDA can regulate the proliferation and motility of HUVEC. A molecular docking simulation and CO-immunoprecipitation assay were performed to observe protein interactions. We observed that PDA induced pathological vascular remodeling characterized by enhanced neointima formation. PDA treatment significantly enhanced the proliferation and migration of vascular endothelial cells. Investigating the potential mechanisms and signaling pathways, we observed that PDA induced endothelial NRP1 expression and activated the VEGF signaling pathway. Knockdown of NRP1 using siRNA transfection attenuated PDA-induced VEGFR2 expression. The interaction between NRP1 and VEGFR2 caused VE-Cad-dependent endothelial barrier impairment, which was characterized by enhanced vascular inflammation. Our study demonstrated that PDA plays a critical role in promoting endothelial barrier repair in pathological vascular remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。