Guanidine modifications enhance the anti-herpes simplex virus activity of (E,E)-4,6-bis(styryl)-pyrimidine derivatives in vitro and in vivo

胍修饰增强(E,E)-4,6-双(苯乙烯基)-嘧啶衍生物体外和体内的抗单纯疱疹病毒活性

阅读:4
作者:Wei Wang, Cuijing Xu, Jianqiang Zhang, Jinpeng Wang, Rilei Yu, Dongping Wang, Ruijuan Yin, Wenmiao Li, Tao Jiang

Background and purpose

The worldwide prevalence of herpes simplex virus (HSV) and shortage of efficient therapeutic strategies to counteract it are global concerns. In terms of treatment, the widely utilized anti-HSV drugs such as acyclovir have serious limitations, for example, drug resistance and side effects. Here, we have identified the guanidine-modified (E,E)-4,6-bis(styryl)-pyrimidine (BS-pyrimidine) derivative compound 5d as an inhibitor of HSV and further elucidated the anti-HSV mechanisms of compound 5d both in vitro and in vivo. Experimental approach: Cytopathic effect inhibition assay, plaque assay, and immunofluorescence assay were used to evaluate the anti-HSV effects of compound 5d in vitro. Membrane fusion assays, immunofluorescence assays, Western blotting assays, and pull-down assays were used to explore the anti-HSV mechanisms of compound 5d. HSV-1-infected mice, combined with haematoxylin-eosin staining and quantitative RT-PCR, were used to study the anti-HSV effects of compound 5d in vivo. Key

Purpose

The worldwide prevalence of herpes simplex virus (HSV) and shortage of efficient therapeutic strategies to counteract it are global concerns. In terms of treatment, the widely utilized anti-HSV drugs such as acyclovir have serious limitations, for example, drug resistance and side effects. Here, we have identified the guanidine-modified (E,E)-4,6-bis(styryl)-pyrimidine (BS-pyrimidine) derivative compound 5d as an inhibitor of HSV and further elucidated the anti-HSV mechanisms of compound 5d both in vitro and in vivo. Experimental approach: Cytopathic effect inhibition assay, plaque assay, and immunofluorescence assay were used to evaluate the anti-HSV effects of compound 5d in vitro. Membrane fusion assays, immunofluorescence assays, Western blotting assays, and pull-down assays were used to explore the anti-HSV mechanisms of compound 5d. HSV-1-infected mice, combined with haematoxylin-eosin staining and quantitative RT-PCR, were used to study the anti-HSV effects of compound 5d in vivo. Key

Results

The guanidine-modified compound 5d rather than the un-modified compound 3a effectively inhibited both HSV-1 and HSV-2 multiplication in different cell lines, more effectively than acyclovir. Compound 5d may block virus binding and post-binding processes such as membrane fusion, by targeting virus gB protein. In addition, compound 5d may also down-regulate the cellular PI3K/Akt signalling pathway to interfere with HSV replication. Treatment with compound 5d also markedly improved survival and decreased viral titres in HSV-infected mice. Conclusions and implications: Thus, the guanidine-modified BS-pyrimidine derivatives have the potential to be developed into novel anti-HSV agents targeting both virus gB protein and cellular PI3K/Akt signalling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。