"Trim"ming PolyQ proteins with engineered PML

利用工程化的 PML“修剪”PolyQ 蛋白

阅读:6
作者:Neha Dhar, Ammar Arsiwala, Shruthi Murali, Ravi S Kane

Abstract

Protein abnormalities are the major cause of neurodegenerative diseases such as spinocerebellar ataxia (SCA). Protein misfolding and impaired degradation leads to the build-up of protein aggregates inside the cell, which may further cause cellular degeneration. Reducing levels of either the soluble misfolded form of the protein or its precipitated aggregate, even marginally, could significantly improve cellular health. Despite numerous pre-existing strategies to target these protein aggregates, there is considerable room to improve their specificity and efficiency. In this study, we demonstrated the enhanced intracellular degradation of both monomers and aggregates of mutant ataxin1 (Atxn1 82Q) by engineering an E3 ubiquitin ligase enzyme, promyelocytic leukemia protein (PML). Specifically, we showed enhanced degradation of both soluble and aggregated Atxn1 82Q in mammalian cells by targeting this protein using PML fused to single chain variable fragments (scFvs) specific for monomers and aggregates of the target protein. The ability to solubilize Atxn1 82Q aggregates was due to the PML-mediated enhanced SUMOylation of the target protein. This ability to reduce the intracellular levels of both misfolded forms of Atxn1 82Q may not only be useful for treating SCA, but also applicable for the treatment of other PolyQ disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。