A Chemically Defined Medium-Based Strategy to Efficiently Generate Clinically Relevant Cord Blood Mesenchymal Stromal Colonies

一种基于化学定义的培养基的策略,可有效生成临床相关的脐带血间充质基质集落

阅读:6
作者:Mario Barilani, Cristiana Lavazza, Valentina Boldrin, Enrico Ragni, Valentina Parazzi, Mariacristina Crosti, Elisa Montelatici, Rosaria Giordano, Lorenza Lazzari

Abstract

During the last decade it has been demonstrated that mesenchymal progenitors are present and can be isolated also from cord blood (CB). Recently, we managed to set up a standard protocol allowing the isolation of mesenchymal stromal cells (MSCs) with high proliferative potential and multiple differentiation capabilities, whereas the generation rate of MSC-initiating colonies could still be further improved. Herein, we strikingly succeeded in defining some simple and basic culture conditions based on the use of a chemically defined medium that increased the colony isolation efficiency up to almost 80% of processed CB units. Importantly, this result was achieved irrespective of CB unit white blood cell content and time elapsed from delivery, two limiting parameters involved with processing CB units. Thus, this high efficiency is guaranteed without strict selection of the starting material. In addition, since we are profoundly concerned about how different culture conditions can influence cell behavior, we devoted part of this study to in-depth characterization of the established CB-MSC populations to confirm their stemness features in this novel isolation and culture system. Therefore, an extended study of their immunophenotype, including classical pericytic markers, and a detailed molecular analysis addressing telomere length and also stemness-related microRNA contribution were performed. In summary, we propose a straightforward, extremely efficient, and reliable approach to isolate and expand thoroughly characterized CB-MSCs, even when poor-quality CB units are the only available source, or there is no space for an isolation to fail.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。