Characterization of the nucleotide excision repair pathway and evaluation of compounds for overcoming the cisplatin resistance of non‑small cell lung cancer cell lines

核苷酸切除修复途径的表征及克服非小细胞肺癌细胞系顺铂耐药性的化合物的评估

阅读:4
作者:Toshihiro Suzuki, Nachanun Sirimangkalakitti, Asami Baba, Ryoko Toyoshima-Nagasaki, Yuna Enomoto, Naoki Saito, Yuki Ogasawara

Abstract

Lung cancer has been reported to be the leading cause of cancer‑related mortality worldwide. Cisplatin combination chemotherapy is a standard therapeutic strategy for patients with non‑small cell lung cancer (NSCLC) lacking driver mutations. However, the development of cisplatin resistance is a major obstacle to effective cancer treatment. The cellular mechanisms underlying cisplatin resistance have been previously revealed to be multifunctional. Accordingly, mechanistic analysis and the development of novel therapeutic strategies for cisplatin‑resistant NSCLC are urgently required. The present study mainly focused on the DNA repair mechanisms in cisplatin‑resistant NSCLC cells. Additionally, the effects of an Ecteinascidin (Et) derivative on cisplatin‑resistant cell lines were examined, by using a cisplatin‑resistant NSCLC cell line subjected to nucleotide excision repair (NER) pathway alterations. The results revealed that xeroderma pigmentosum group F‑complementing protein (XPF) mRNA expression was strongly associated with cisplatin resistance in cisplatin‑resistant NSCLC cell lines. XPF silencing significantly restored the sensitivity of cisplatin‑resistant PC‑14/CDDP cells to the drug. A potent anticancer effect of Et was observed in the cisplatin‑resistant cell line (PC‑14/CDDP), in which the NER pathway was altered. On the whole, these findings revealed that the expression levels of NER pathway‑related genes, including XPF, may have potential as biomarkers of cisplatin resistance. It was also suggested that Et may be a very promising compound for the development of novel anticancer drugs for the treatment of cisplatin‑resistant lung cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。