Proteomic Analysis Reveals a Critical Role of the Glycosyl Hydrolase 17 Protein in Panax ginseng Leaves under Salt Stress

蛋白质组学分析揭示糖基水解酶 17 蛋白在盐胁迫下人参叶片中的关键作用

阅读:5
作者:Ju-Young Jung, Cheol Woo Min, Jeong Woo Jang, Ravi Gupta, Ji-Hyun Kim, Young-Hun Kim, Sung Won Cho, Young Hun Song, Ick-Hyun Jo, Randeep Rakwal, Yu-Jin Kim, Sun Tae Kim

Abstract

Ginseng, an important crop in East Asia, exhibits multiple medicinal and nutritional benefits because of the presence of ginsenosides. On the other hand, the ginseng yield is severely affected by abiotic stressors, particularly salinity, which reduces yield and quality. Therefore, efforts are needed to improve the ginseng yield during salinity stress, but salinity stress-induced changes in ginseng are poorly understood, particularly at the proteome-wide level. In this study, we report the comparative proteome profiles of ginseng leaves at four different time points (mock, 24, 72, and 96 h) using a label-free quantitative proteome approach. Of the 2484 proteins identified, 468 were salt-responsive. In particular, glycosyl hydrolase 17 (PgGH17), catalase-peroxidase 2, voltage-gated potassium channel subunit beta-2, fructose-1,6-bisphosphatase class 1, and chlorophyll a-b binding protein accumulated in ginseng leaves in response to salt stress. The heterologous expression of PgGH17 in Arabidopsis thaliana improved the salt tolerance of transgenic lines without compromising plant growth. Overall, this study uncovers the salt-induced changes in ginseng leaves at the proteome level and highlights the critical role of PgGH17 in salt stress tolerance in ginseng.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。