Phyllanthus taxodiifolius Beille Disrupted N-cadherin, Vimentin, Paxillin and Actin Stress Fibers in Glioblastoma

Phyllanthus taxodiifolius Beille 破坏胶质母细胞瘤中的 N-钙粘蛋白、波形蛋白、桩蛋白和肌动蛋白应力纤维

阅读:5
作者:Chotchanit Sunrat, Jaturon Kwanthongdee, Kwanchanok Uppakara, Napason Chabang, Bamroong Munyoo, Patoomratana Tuchinda, Witchuda Saengsawang

Conclusion

Our study demonstrates for the first time that P. taxodiifolius interferes with multiple key molecules related to pathological hallmarks of glioblastoma. These molecules are involved with cell contacts, focal adhesions, and the formation and stabilization of actin stress fibers, which are required for glioblastoma metastatic behavior. These results provide further evidence supporting the potential of P. taxodiifolius and its bioactive compounds as anti-cancer agents.

Methods

P. taxodiifolius were air-dried, powdered and percolated with methanol, filtered, concentrated and lyophilized to yield a crude methanol extract. C6 glioblastoma cell line was used in this study. The expression of N-cadherin and vimentin, as well as the activation of paxillin was determined using Western blot analysis. The effect of the extract on focal adhesions and actin cytoskeleton were investigated using immunofluorescence staining and confocal imaging.

Objective

Glioblastoma is the most aggressive and lethal brain tumor in adults with highly invasive properties. In this present study, we explored the effects of Phyllanthus taxodiifolius Beille extract on molecules known to be hallmarks of aggressive glioblastoma including N-cadherin and vimentin, mesenchymal markers, as well as paxillin, a major adaptor protein that regulates the linking of focal adhesions to the actin cytoskeleton.

Results

In the presence of 40 µg/ml Phyllanthus taxodiifolius Beille extract, the expression of N-cadherin and vimentin were significantly decreased (p<0.001 and p<0.05, respectively). Activation of paxillin was also diminished as indicated by a reduction of phosphorylated-paxillin (p<0.01). Consequently, actin stress fibers in glioblastoma cells were abolished as evidenced by the decrease in focal adhesion (p<0.001) and stress fibers numbers (p<0.001).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。