The distribution and density of monocarboxylate transporter 2 in cerebral cortex, hippocampus and cerebellum of wild-type mice

野生型小鼠大脑皮层、海马和小脑单羧酸转运体2的分布和密度

阅读:3
作者:Ruiqi Pang, Xiaofan Wang, Zhiqiang Du, Feifei Pei, Zhiyue Li, Libing Sun, Shuying Wang, Yingnan Peng, Xupeng Lu, Xiaoqun Gao, Cheng Chang

Abstract

Monocarboxylates cannot cross the blood-brain barrier freely to participate in brain energy metabolism. Specific monocarboxylate transporters (MCTs) are needed to cross cellular membranes. Monocarboxylate transporter 2 (MCT2) is a major monocarboxylate transporter encoded by the SLC16A7 gene. Recent studies reported that neurodegenerative diseases of the CNS, such as Alzheimer's disease (AD) and Parkinson's disease (PD), were related to energy metabolic impairment. MCT2 also plays an important role in energy metabolism in the CNS. To provide experimental evidence for future research on the role of MCT2 in the pathological process of CNS degenerative diseases, the distribution and density of MCT2 in different subregions of wild-type mouse brain was examined using immunohistochemistry, western blot and immunogold post-embedding electron microscopic techniques. The amount of MCT2 was higher in cerebellum than in cortex and hippocampus on western blots, and there was no statistical difference between cortex and hippocampus. Immunohistochemistry assay revealed the highest density of MCT2 in the CA3 of the hippocampus. The granular cell layer of the cerebellum contained more MCT2 than the molecular layer. The MCT2 density on the end feet of astrocytes of molecular layer was lower than in hippocampus, but the postsynaptic densities (PSDs) of asymmetric synapses in the molecular layer exhibited a high density using immunogold post-embedding electron microscopic techniques.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。