nAChRs-ERK1/2-Egr-1 signaling participates in the developmental toxicity of nicotine by epigenetically down-regulating placental 11β-HSD2

nAChRs-ERK1/2-Egr-1 信号通过表观遗传下调胎盘 11β-HSD2 参与尼古丁的发育毒性

阅读:6
作者:Jin Zhou, Fulin Liu, Luting Yu, Dan Xu, Bin Li, Guohui Zhang, Wen Huang, Lu Li, Yuanzhen Zhang, Wei Zhang, Hui Wang

Abstract

Impaired placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) activity which inactivates maternal glucocorticoids is associated with poor fetal growth and a higher risk of chronic diseases in adulthood. This study aimed to elucidate the epigenetically regulatory mechanism of nicotine on placental 11β-HSD2 expression. Pregnant Wistar rats were administered 1.0 mg/kg nicotine subcutaneously twice a day from gestational day 9 to 20. The results showed that prenatal nicotine exposure increased corticosterone levels in the placenta and fetal serum, disrupted placental morphology and endocrine function, and reduced fetal bodyweight. Meanwhile, histone modification abnormalities (decreased acetylation and increased di-methylation of histone 3 Lysine 9) on the HSD11B2 promoter and lower-expression of 11β-HSD2 were observed. Furthermore, the expression of nicotinic acetylcholine receptor (nAChR) α4/β2, the phosphorylation of extracellular regulated kinase 1/2 (ERK1/2) and Ets-like protein-1 (Elk-1), and the expression of early growth response-1 (Egr-1) were increased in the nicotine groups. In human BeWo cells, nicotine decreased 11β-HSD2 expression, increased nAChRα9 expression, and activated ERK1/2/Elk-1/Egr-1 signaling in the concentration (0.1-10 μM)-dependent manner. Antagonism of nAChRs, inhibition of ERK1/2 and Egr-1 knockdown by siRNA were able to block/abrogate the effects of nicotine on histone modification and expression of 11β-HSD2. Taken together, nicotine can impair placental structure and function, and induce fetal developmental toxicity. The underlying mechanism involves histone modifications and down-regulation of 11β-HSD2 through nAChRs/ERK1/2/Elk-1/Egr-1 signaling, which increases active glucocorticoids levels in the placenta and fetus, and eventually inhibits the fetal development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。