Sex-Dependent effects of developmental arsenic exposure on methylation capacity and methylation regulation of the glucocorticoid receptor system in the embryonic mouse brain

发育期砷暴露对小鼠胚胎脑糖皮质激素受体系统甲基化能力及甲基化调节的性别依赖性影响

阅读:5
作者:Andrea M Allan, Alexander K Hafez, Matthew T Labrecque, Elizabeth R Solomon, M Nabil Shaikh, Xianyun Zheng, Abdulmehdi Ali

Abstract

Previously we have shown that prenatal moderate arsenic exposure (50 ppb) disrupts glucocorticoid receptor (GR) programming and that these changes continue into adolescence in males. However, it was not clear what the molecular mechanisms were promoting these GR programming changes or if these changes occurred in arsenic-exposed females. In the present studies, we assessed the effects of arsenic on protein and mRNA of the glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase (Hsd) isozymes and compared the levels of methylation within the promoters of the Nr3c1 and Hsd11b1 genes in female fetal brain at embryonic days (E) 14 and 18. Prenatal arsenate exposure produced sex specific effects on the glucocorticoid system. Compared to males, females were resistant to arsenic induced changes in GR, 11β-Hsd-1 and 11β-Hsd-2 protein levels despite observed elevations in Nr3c1 and Hsd11b2 mRNA. This sex-specific effect was not due to differences in the methylation of the GR promoter as methylation of the Nr3c1 gene was either unchanged (region containing the egr-1 binding site) or similarly reduced (region containing the SP-1 transcription factor binding site) in both males and females exposed to arsenic. Arsenic did produce sex and age-specific changes in the methylation of Hsd11b1 gene, producing increased methylation in females at E14 and decreased methylation at E18. These changes were not attributed to changes in DNMT levels. Since arsenate metabolism could interfere with the generation of methyl donor groups, we assessed glutathione (GSH), s-adenosylmethionine (SAM) and As 3 methyltransferase (As3MT). Exposed males and females had similar levels of As3MT and SAM; however, females had higher levels of GSH/GSSH. It is possible that this greater anti-oxidative capacity within the females provides protection against low to moderate arsenate. Our data suggest that the GR signaling system in female offspring was not as affected by prenatal arsenic and predicts that female arsenic-exposed mice should have normal GR feedback regulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。