Utilizing Gold Nanoparticles as Prospective Radiosensitizers in 3D Radioresistant Pancreatic Co-Culture Model

利用金纳米粒子作为 3D 抗放射胰腺共培养模型中的预期放射增敏剂

阅读:5
作者:Abdulaziz Alhussan, Nolan Jackson, Reinali Calisin, Jessica Morgan, Wayne Beckham, Devika B Chithrani

Abstract

Pancreatic cancer stands among the deadliest forms of cancer, and the existing treatments fall short of providing adequate efficacy. Novel and more effective treatment approaches are urgently required to address this critical medical challenge. In this study, we aimed to evaluate the anti-cancer efficacy of gold nanoparticles (GNPs) in combination with radiotherapy (RT). A 3D pancreatic cancer co-culture spheroid model of MIA PaCa-2 cancer cells and patient-derived cancer-associated fibroblasts (CAF-98) was used. The spheroids were treated with GNPs (7.5 μg/mL) and 2 Gy of RT. The spheroids' cell viability was assessed through the CellTiter-Glo 3D assay, and an immunofluorescence assay was used to assess the DNA DSBs via the expression of the DNA damage marker 53BP1. Co-culture samples showed a 10.8% (p < 0.05) increase in proliferation and a 13.0% (p < 0.05) decrease in DNA DSB when compared to monoculture samples, However, they displayed a 175% (p < 0.001) increase in GNPs uptake when compared to monoculture spheroids. Using GNPs/RT, we were able to show a significant reduction of 6.2% (p < 0.05) in spheroid size and an increase of 14.3% (p < 0.05) in DNA DSB damage in co-culture samples. The combination of GNPs with RT demonstrated remarkable radiosensitization effects, representing a promising approach to enhance cancer treatment efficacy. These effects were particularly noteworthy in the more treatment-resistant co-culture spheroid model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。