Conclusion
Our study revealed that the miR-204-5p/PRPP11 axis suppressed BC progression, which may provide a novel insight into the regulatory roles of miR-204-5p.
Methods
miR-204-5p expression level in BC cell lines was measured by qRT-PCR. Putative binding sites of miR-204-5p on the 3'-untranslated region of PRR11 were predicted by the bioinformatics method and verified by the dual-luciferase method. Protein and mRNA levels of PRR11 in BC were determined by western blot and qRT-PCR. The association between two genes was analyzed by correlation analysis. Cancer cell functions were evaluated through CCK8, flow cytometry, and Transwell approaches.
Purpose
To unravel mechanisms of miR-204-5p in breast cancer (BC) cells.
Results
Significant downregulation of miR-204-5p was observed in BC tissue and cells. Cell functional experiments showed the inhibition of miR-204-5p on cell behaviors and cell cycle. PRR11 was the downstream target of miR-204-5p. Inhibition of RPP11 could reverse the impacts of the miR-204-5p inhibitor on cell functions of BC.
