Application of agro-waste-mediated silica nanoparticles to sustainable agriculture

农业废弃物介导的二氧化硅纳米粒子在可持续农业中的应用

阅读:6
作者:Pooja Goswami, Jyoti Mathur

Abstract

Use of green agronomic techniques for plant development and crop protection is essential for environmental sustainability. The current research investigates a more efficient and long-term technique of manufacturing silica nanoparticles (SiO2 NPs) from agricultural waste (sugarcane bagasse and corn cob). SiO2 NPs were synthesized by calcinations of waste residues in muffle furnace with varying temperatures (400-1000 °C)/2 h in the present of static air. Field emission scanning electron microscopy (FESEM), Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX) were used to characterize SiO2 NPs and assessed for their antifungal activity simultaneously investigated the effects of various concentrations of produced SiO2 NPs on Eruca sativa (E. sativa) physiological and biochemical. With SiO2 NPs treatment at 1000 µg L-1 concentration, the seed germination rate was found to be up to 95.5%, and growth characteristics were enhanced compared to control. Accordingly, the ones treated with SiO2 NPs grew better than the control ones. The treatment of plant with SiO2 NPs (500 μg L-1) increased the protein content by 14.8 mg g-1, and chlorophyll level was also increased by 4.08 mg g-1 in leaves compared to untreated plant. Disc diffusion experiment was conducted to test the efficiency of SiO2 NPs against Fusarium oxysporum and Aspergillus niger for antifungal activities. Highest mycelia growth inhibition was obtained with 73.42% and 58.92% for F. oxysporum and A. niger, respectively. The result shows that the SiO2 NPs have a favorable effect on E. sativa growth and germination, enhancing plant production which helps to improve the sustainable agriculture farming and acting as a possible antifungal agent against plant pathogenic fungi.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。