Nicotinamide Mononucleotide Ameliorates Cellular Senescence and Inflammation Caused by Sodium Iodate in RPE

烟酰胺单核苷酸改善碘酸钠引起的 RPE 细胞衰老和炎症

阅读:5
作者:Chengda Ren, Chengyu Hu, Yan Wu, Tingting Li, Aiqi Zou, Donghui Yu, Tianyi Shen, Wenting Cai, Jing Yu

Abstract

Senescent cells have been demonstrated to have lower cellular NAD+ levels and are involved in the development of various age-related diseases, including age-related macular degeneration (AMD). Sodium iodate (NaIO3) has been primarily used as an oxidant to establish a model of dry AMD. Results of previous studies have showed that NaIO3 induced retinal tissue senescence in vivo. However, the role of NaIO3 and the mechanism by which it induces retinal pigment epithelium (RPE) senescence remains unknown. In this study, RPE cell senescence was confirmed to be potentially induced by NaIO3. The results showed that the number of senescence-associated-β-galactosidase (SA-β-gal-)-positive cells and the protein levels of p16 and p21 increased after NaIO3 treatment. Additionally, the senescent RPE cells underwent oxidative stress and NAD+ depletion. Furthermore, significant DNA damage and mitochondrial dysfunction were also detected in senescent RPE cells. The antioxidant N-acetylcysteine (NAC) could alleviate cellular senescence only by a minimal degree, whereas supplementation with nicotinamide mononucleotide (NMN) strongly ameliorated RPE senescence through the alleviation of DNA damage and the maintenance of mitochondrial function. The protective effects of NMN were demonstrated to rely on undisturbed Sirt1 signaling. Moreover, both the expression of senescence markers of RPE and subretinal inflammatory cell infiltration were decreased by NMN treatment in vivo. Our results indicate that RPE senescence induced by NaIO3 acquired several key features of AMD. More importantly, NMN may potentially be used to treat RPE senescence and senescence-associated pre-AMD changes by restoring the NAD+ levels in cells and tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。