Adsorptive removal of levofloxacin and antibiotic resistance genes from hospital wastewater by nano-zero-valent iron and nano-copper using kinetic studies and response surface methodology

使用动力学研究和响应面法通过纳米零价铁和纳米铜吸附去除医院废水中的左氧氟沙星和抗生素抗性基因

阅读:7
作者:Mohammed Taha Moustafa Hussien Hamad, Marwa E El-Sesy

Abstract

In the twenty-first century, water contamination with pharmaceutical residues is becoming a global phenomenon and a threat. Antibiotic residues and antibiotic resistance genes (ARGs) are recognized as new emerging water pollutants because they can negatively affect aquatic ecosystems and human health, thereby posing a complex environmental problem. These nano-adsorbents of the next generation can remove these pollutants at low concentrations. This study focuses on the chemical synthesis of copper oxide nanoparticles (CuONPs) and nano-zero-valent iron (nZVI) used as nano-adsorbents for levofloxacin removal from water samples and antibiotic-resistant genes. The CuONPs and nZVI are initially characterized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. The levofloxacin adsorption isotherm on the CuONPS and nZVI shows the best fit with the Langmuir isotherm model, exhibiting correlation coefficients (R2) of 0.993 and 0.999, respectively. The adsorption activities of CuONPS and nZVI were fitted to a pseudo-second-order kinetic model with correlation coefficients (R2) of 0.983 and 0.994, respectively. The maximum levofloxacin removal capacity was observed at (89%), (84%), (89%), (88%) and (71.6) at pH 7 and adsorbent dose(0.06 mg/L), initial LEV concentration (1 mg/L), temperature 25 °C, and contact time 120 min for CuONPs. Removal efficiency was (91%), (90.6%), (91%), (89%), and (80%), at pH 7, adsorbent dose(0.06), initial LEV concentration (1 mg/L), temperature 35 °C, and contact time 120 min. The levofloxacin adsorption is an exothermic process for nZVI and CuONPs, according to thermodynamic analysis. A thermodynamic analysis indicated that each adsorption process is spontaneous. Several genera, including clinically pathogenic bacteria (e.g., Acinetobacter_baumannii, Helicobacter_pylori, Escherichia_coli, Pseudomonas_aeruginosa, Clostridium_beijerinckii, Escherichia/Shigella_coli, Helicobacter_cetorum, Lactobacillus_gasseri, Bacillus_cereus, Deinococcus_radiodurans, Rhodobacter_sphaeroides, Propionibacterium_acnes, and Bacteroides_vulgatus) were relatively abundant in hospital wastewater. Furthermore, 37 antibiotic resistance genes (ARGs) were quantified in hospital wastewater. The results demonstrated that 95.01% of nZVI and 91.4% of CuONPs are effective adsorbents for removing antibiotic-resistant bacteria from hospital effluent. The synthesized nZVI and CuONPs have excellent reusability and can be considered cost effective and eco-friendly adsorbents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。