The chitosan/carboxymethyl cellulose/montmorillonite scaffolds incorporated with epigallocatechin-3-gallate-loaded chitosan microspheres for promoting osteogenesis of human umbilical cord-derived mesenchymal stem cell

壳聚糖/羧甲基纤维素/蒙脱石支架复合表没食子儿茶素没食子酸酯壳聚糖微球促进人脐带间充质干细胞成骨

阅读:4
作者:Jin Wang #, Wubo He #, Wen-Song Tan, Haibo Cai

Abstract

Epigallocatechin-3-gallate (EGCG) is a plant-derived flavonoid compound with the ability to promote the differentiation of human bone marrow-derived mesenchymal stem cells (MSCs) into osteoblasts. However, the effect of EGCG on the osteogenic differentiation of the human umbilical cord-derived mesenchymal stem cells (HUMSCs) is rarely studied. Therefore, in this study, the osteogenic effects of EGCG are studied in the HUMSCs by detecting cell proliferation, alkaline phosphatase (ALP) activity, calcium deposition and the expression of relevant osteogenic markers. The results showed that EGCG can promote the proliferation and osteogenic differentiation of the HUMSCs in vitro at a concentration of 2.5-5.0 μM. Unfortunately, the EGCG is easily metabolized by cells during cell culture, which reduces its bioavailability. Therefore, in this paper, EGCG-loaded microspheres (ECM) were prepared and embedded in chitosan/carboxymethyl cellulose/montmorillonite (CS/CMC/MMT) scaffolds to form CS/CMC/MMT-ECM scaffolds for improving the bioavailability of EGCG. The HUMSCs were cultured on CS/CMC/MMT-ECM scaffolds to induce osteogenic differentiation. The results showed that the CS/CMC/MMT-ECM scaffold continuously released EGCG for up to 22 days. In addition, CS/CMC/MMT-ECM scaffolds can promote osteoblast differentiation. Taken together, the present study suggested that entrainment of ECM into CS/CMC/MMT scaffolds was a prospective scheme for promotion osteogenic differentiation of the HUMSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。