Hypothalamic ER-associated degradation regulates POMC maturation, feeding, and age-associated obesity

下丘脑内质网相关降解调节POMC成熟、摄食以及年龄相关性肥胖

阅读:4
作者:Geun Hyang Kim, Guojun Shi, Diane Rm Somlo, Leena Haataja, Soobin Song, Qiaoming Long, Eduardo A Nillni, Malcolm J Low, Peter Arvan, Martin G Myers Jr, Ling Qi

Abstract

Pro-opiomelanocortin (POMC) neurons function as key regulators of metabolism and physiology by releasing prohormone-derived neuropeptides with distinct biological activities. However, our understanding of early events in prohormone maturation in the ER remains incomplete. Highlighting the significance of this gap in knowledge, a single POMC cysteine-to-phenylalanine mutation at position 28 (POMC-C28F) is defective for ER processing and causes early onset obesity in a dominant-negative manner in humans through an unclear mechanism. Here, we report a pathologically important role of Sel1L-Hrd1, the protein complex of ER-associated degradation (ERAD), within POMC neurons. Mice with POMC neuron-specific Sel1L deficiency developed age-associated obesity due, at least in part, to the ER retention of POMC that led to hyperphagia. The Sel1L-Hrd1 complex targets a fraction of nascent POMC molecules for ubiquitination and proteasomal degradation, preventing accumulation of misfolded and aggregated POMC, thereby ensuring that another fraction of POMC can undergo normal posttranslational processing and trafficking for secretion. Moreover, we found that the disease-associated POMC-C28F mutant evades ERAD and becomes aggregated due to the presence of a highly reactive unpaired cysteine thiol at position 50. Thus, this study not only identifies ERAD as an important mechanism regulating POMC maturation within the ER, but also provides insights into the pathogenesis of monogenic obesity associated with defective prohormone folding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。