Anti-inflammatory effect of Vaccinium oldhamii stems through inhibition of NF-κB and MAPK/ATF2 signaling activation in LPS-stimulated RAW264.7 cells

越橘茎通过抑制 LPS 刺激的 RAW264.7 细胞中的 NF-κB 和 MAPK/ATF2 信号激活发挥抗炎作用

阅读:8
作者:Ha Na Kim, Jueng Kyu Baek, Su Bin Park, Jeong Dong Kim, Ho-Jun Son, Gwang Hun Park, Hyun Ji Eo, Jae Ho Park, Hyuk-Sang Jung, Jin Boo Jeong

Background

Vaccinium oldhamii (V. oldhamii) has been reported to exert a variety of the pharmacological properties such as anti-oxidant activity, anti-cancer activity, and inhibitory activity of α-amylase and acetylcholinesterase. However, the anti-inflammatory activity of V. oldhamii has not been studied. In this study, we aimed to investigate anti-inflammatory activity of the stem extracts from V. oldhamii, and to elucidate the potential mechanisms in LPS-stimulated RAW264.7 cells.

Conclusions

These results indicate that VOS may exert anti-inflammatory activity by inhibiting NF-κB and MAPK/ATF2 signaling. From these findings, VOS has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammatory diseases.

Methods

Cell viability was evaluated by MTT assay. The determination of NO and PGE2 production was performed using Griess reagent and Prostaglandin E2 ELISA Kit, respectively. The change of mRNA or protein level was evaluated by RT-PCR and Western blot.

Results

Among VOS, VOL and VOF, the inhibitory effect of NO and PGE2 production induced by LPS was highest in VOS treatment. Thus, VOS was selected for the further study. VOS dose-dependently blocked LPS-induced NO and PGE2 production by inhibiting iNOS and COX-2 expression, respectively. VOS inhibited the expression of pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α. In addition, VOS suppressed TRAP activity and attenuated the expression of the osteoclast-specific genes such as NFATc1, c-FOS, TRAP, MMP-9, cathepsin K, CA2, OSCAR and ATPv06d2. VOS inhibited LPS-induced NF-κB signaling activation through blocking IκB-α degradation and p65 nuclear accumulation. VOS inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, VOS inhibited ATF2 phosphorylation and blocked ATF2 nuclear accumulation. Conclusions: These results indicate that VOS may exert anti-inflammatory activity by inhibiting NF-κB and MAPK/ATF2 signaling. From these findings, VOS has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。