KLF10 Gene Expression Modulates Fibrosis in Dystrophic Skeletal Muscle

KLF10 基因表达调节营养不良骨骼肌的纤维化

阅读:8
作者:Joseph X DiMario

Abstract

Dystrophic skeletal muscle is characterized by fibrotic accumulation of extracellular matrix components that compromise muscle structure, function, and capacity for regeneration. Tissue fibrosis is often initiated and sustained through transforming growth factor-β (TGF-β) signaling, and Krüppel-like factor 10 (KLF10) is an immediate early gene that is transcriptionally activated in response to TGF-β signaling. It encodes a transcriptional regulator that mediates the effects of TGF-β signaling in a variety of cell types. This report presents results of investigation of the effects of loss of KLF10 gene expression in wild-type and dystrophic (mdx) skeletal muscle. On the basis of RT-PCR, Western blot, and histological analyses of mouse tibialis anterior and diaphragm muscles, collagen type I (Col1a1) and fibronectin gene expression and protein deposition were increased in KLF10-/- mice, contributing to increased fibrosis. KLF10-/- mice displayed increased expression of genes encoding SMAD2, SMAD3, and SMAD7, particularly in diaphragm muscle. SMAD4 gene expression was unchanged. Expression of the extracellular matrix remodeling genes, MMP2 and TIMP1, was also increased in KLF10-deficient mouse muscle. Histological analyses and assays of hydroxyproline content indicated that the loss of KLF10 increased fibrosis. Dystrophic KLF10-null mice also had reduced grip strength. The effects of loss of KLF10 gene expression were most pronounced in dystrophic diaphragm muscle, suggesting that KLF10 moderates the fibrotic effects of TGF-β signaling in chronically damaged regenerating muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。