Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) promotes the EMT of serous ovarian cancer by activating the hexosamine biosynthetic pathway to increase the nuclear location of β-catenin

谷氨酰胺-果糖-6-磷酸转氨酶2(GFPT2)通过激活己糖胺生物合成途径增加β-catenin的核定位,促进浆液性卵巢癌的EMT

阅读:4
作者:Lin Zhou, Mu Luo, Li-Juan Cheng, Ruo-Nan Li, Bin Liu, Hua Linghu

Abstract

The hexosamine biosynthetic pathway (HBP), a branch of glucose metabolism, provides a substrate for glycosylation modification, which has a wide-ranging effect on cellular functions. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) has been reported to regulate the HBP as the first and rate-limiting enzyme. Given the inverse association between GFPT2 expression and survival of patients with serous ovarian cancer (SOC) observed in The Cancer Genome Atlas (TCGA) database, we attempted to investigate the role of GFPT2 and its related mechanisms in SOC. The results showed that GFPT2 was over-expressed in SOC tissues, and positive correlations with advanced stage (FIGO III/IV), suboptimal removal rate and poor survival were observed in 90 SOC patients. Cell migration and invasion were also inhibited in GFPT2 knockdown SKOV3 and HEY cells. The levels of O-linked β-N-acetylglucosamine (O-GlcNAc) and intranuclear β-catenin were evaluated and the observed increase in O-GlcNAcylation induced by GFPT2 may contribute to epithelial-mesenchymal transition (EMT). These data provide novel insights into the function of GFPT2 and O-GlcNAcylation in the EMT and thus the invasiveness SOC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。