Chitosan-zinc-insulin complex incorporated thermosensitive polymer for controlled delivery of basal insulin in vivo

壳聚糖-锌-胰岛素复合物掺入热敏聚合物用于体内控制基础胰岛素的输送

阅读:6
作者:Mayura Oak, Jagdish Singh

Abstract

Thermosensitive polymeric delivery system (PLA-PEG-PLA) loaded with chitosan-zinc-insulin complex was designed for continuous in vivo insulin delivery at basal level for prolonged period after a single subcutaneous injection. Chitosan-zinc-insulin complex was optimized to restrict the diffusion of insulin from the delivery system by forming large complexes and thereby reducing the initial burst release. The in vivo absorption and bioactivity of insulin released from the delivery systems were studied in streptozotocin-induced diabetic rat model. The amount of insulin released in vivo was quantified using the Enzyme Linked Immunosorbent Assay (ELISA), and its bioactivity was determined by its ability to reduce the blood glucose levels in diabetic rats. An indirect ELISA was performed to determine the immunogenic potential of insulin released from the formulations. Furthermore, the in vitro and in vivo biocompatibility of the delivery system was studied using an MTT assay, and by studying the histology of skin samples, respectively. Chitosan-zinc-insulin complex significantly (P<0.05) reduced the initial burst release of insulin from the polymeric delivery system in comparison to zinc-insulin or insulin alone. The delivery system released insulin for ~3 months in biologically active form with corresponding reduction in blood glucose levels in diabetic rats. The insulin released from the delivery systems did not provoke any immune response. The delivery systems demonstrated excellent biocompatibility both in vitro and in vivo and were non-toxic. The results indicate that the chitosan-zinc-insulin complex incorporated in the thermosensitive polymeric delivery system can be used as an alternative to the conventional daily basal insulin therapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。