Bow-tie architectures in biological and artificial neural networks: Implications for network evolution and assay design

生物和人工神经网络中的领结结构:对网络演化和检测设计的影响

阅读:1
作者:Seth Hilliard ,Karen Mosoyan ,Sergio Branciamore ,Grigoriy Gogoshin ,Alvin Zhang ,Diana L Simons ,Russell C Rockne ,Peter P Lee ,Andrei S Rodin

Abstract

Modern artificial neural networks (ANNs) have long been designed on foundations of mathematics as opposed to their original foundations of biomimicry. However, the structure and function of these modern ANNs are often analogous to real-life biological networks. We propose that the ubiquitous information-theoretic principles underlying the development of ANNs are similar to the principles guiding the macro-evolution of biological networks and that insights gained from one field can be applied to the other. We generate hypotheses on the bow-tie network structure of the Janus kinase - signal transducers and activators of transcription (JAK-STAT) pathway, additionally informed by the evolutionary considerations, and carry out ANN simulation experiments to demonstrate that an increase in the network's input and output complexity does not necessarily require a more complex intermediate layer. This observation should guide novel biomarker discovery-namely, to prioritize sections of the biological networks in which information is most compressed as opposed to biomarkers representing the periphery of the network.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。