Identifying predictors of HPV-related head and neck squamous cell carcinoma progression and survival through patient-derived models

通过患者衍生模型识别 HPV 相关头颈部鳞状细胞癌进展和生存的预测因子

阅读:5
作者:Nicole D Facompre, Pavithra Rajagopalan, Varun Sahu, Alexander T Pearson, Kathleen T Montone, Claire D James, Frederico O Gleber-Netto, Gregory S Weinstein, Jalal Jalaly, Alexander Lin, Anil K Rustgi, Hiroshi Nakagawa, Joseph A Califano, Curtis R Pickering, Elizabeth A White, Bradford E Windle, Iain

Abstract

Therapeutic innovation for human papilloma virus-related (HPV+) head and neck squamous cell carcinomas (HNSCCs) is impaired by inadequate preclinical models and the absence of accurate biomarkers. Our study establishes the first well-characterized panel of patient-derived xenografts (PDXs) and organoids from HPV+ HNSCCs while determining fidelity of the models to the distinguishing genetic features of this cancer type. Despite low engraftment rates, whole exome sequencing showed that PDXs retain multiple distinguishing features of HPV+ HNSCC lost in existing cell lines, including PIK3CA mutations, TRAF3 deletion and the absence of EGFR amplifications. Engrafted HPV+ tumors frequently contained NOTCH1 mutations, thus providing new models for a negatively prognostic alteration in this disease. Genotype-phenotype associations in the models were then tested for prediction of tumor progression and survival in published clinical cohorts. Observation of high tumor mutational burdens (TMBs) in the faster-growing models facilitated identification of a novel association between TMB and local progression in both HPV+ and HPV- patients that was prognostic in HPV- cases. In addition, reduced E7 and p16INK4A levels found in a PDX from an outlier case with lethal outcome led to detection of similar profiles among recurrent HPV+ HNSCCs. Transcriptional data from the Cancer Genome Atlas was used to demonstrate that the lower E2F target gene expression predicted by reduced E7 levels has potential as a biomarker of disease recurrence risk. Our findings bridge a critical gap in preclinical models for HPV+ HNSCCs and simultaneously reveal novel potential applications of quantifying mutational burden and viral oncogene functions for biomarker development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。