Conclusion
Here, we describe preliminary structure-activity relationships for antileishmanial pyrazolopyrrolidinones, and our progress towards the identification of candidates for future in vivo assays in models of visceral and cutaneous leishmaniasis.
Discussion
Members of the series showed high potency against the deadliest form, visceral leishmaniasis (approximate EC50 ≥ 0.01 μM without harming the host macrophage up to 10.0 μM). In comparison, the most efficient monotherapy treatment for visceral leishmaniasis is amphotericin B, which presents similar activity in the same assay (EC50 = 0.2 μM) while being cytotoxic to the host cell at 5.0 μM. Continued development of this compound series with the Discovery Partnership with Academia (DPAc) program at the GlaxoSmithKline Diseases of the Developing World (GSK DDW) laboratories found that the compounds passed all of GSK's criteria to be defined as a potential lead drug series for leishmaniasis. Conclusion: Here, we describe preliminary structure-activity relationships for antileishmanial pyrazolopyrrolidinones, and our progress towards the identification of candidates for future in vivo assays in models of visceral and cutaneous leishmaniasis.
Methods
In this study, we performed medicinal chemistry on a newly discovered antileishmanial chemotype, with over 100 analogs tested. Studies included assessments of antileishmanial potency, toxicity towards host cells, and in vitro ADME screening of key drug properties.
