HIV-1 matrix protein p17 promotes angiogenesis via chemokine receptors CXCR1 and CXCR2

HIV-1 基质蛋白 p17 通过趋化因子受体 CXCR1 和 CXCR2 促进血管生成

阅读:6
作者:Francesca Caccuri, Cinzia Giagulli, Antonella Bugatti, Anna Benetti, Giulio Alessandri, Domenico Ribatti, Stefania Marsico, Paola Apostoli, Mark A Slevin, Marco Rusnati, Carlos A Guzman, Simona Fiorentini, Arnaldo Caruso

Abstract

Vascular diseases supported by aberrant angiogenesis have increased incidence in HIV-1-infected patients. Several data suggest that endothelium dysfunction relies on action of HIV-1 proteins rather than on a direct effect of the virus itself. The HIV-1 matrix protein p17 is known to deregulate the biological activity of different immune cells. Recently, p17 was found to mimic IL-8 chemokine activity by binding to the IL-8 receptor CXCR1. Here we show that p17 binds with high affinity to CXCR2, a CXCR1-related receptor, and promotes the formation of capillary-like structures on human endothelial cells (ECs) by interacting with both CXCR1 and CXCR2 expressed on the EC surface. ERK signaling via Akt was defined as the pathway responsible for p17-induced tube formation. Ex vivo and in vivo experimental models confirmed the provasculogenic activity of p17, which was comparable to that induced by VEGF-A. The hypothesis of a major role for p17 in HIV-1-induced aberrant angiogenesis is enforced by the finding that p17 is detected, as a single protein, in blood vessels of HIV-1-patients and in particular in the nucleus of ECs. Localization of p17 in the nucleus of ECs was evidenced also in in vitro experiments, suggesting the internalization of exogenous p17 in ECs by mechanisms of receptor-mediated endocytosis. Recognizing p17 interaction with CXCR1 and CXCR2 as the key event in sustaining EC aberrant angiogenesis could help us to identify new treatment strategies in combating AIDS-related vascular diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。