Erythrocyte glutathione transferase in kidney transplantation: a probe for kidney detoxification efficiency

肾移植中的红细胞谷胱甘肽转移酶:肾脏解毒效率的探测

阅读:5
作者:Alessio Bocedi, Annalisa Noce, Valentina Rovella, Giulia Marrone, Giada Cattani, Massimo Iappelli, Paolo De Paolis, Giuseppe Iaria, Daniele Sforza, Mariacarla Gallù, Giuseppe Tisone, Nicola Di Daniele, Giorgio Ricci

Abstract

Erythrocyte glutathione transferase (e-GST) is overexpressed in case of increased blood toxicity and its level correlates with the kidney disease progression. Thus, it represents a probe of kidney efficiency against circulating toxins. We measured the activity of e-GST in patients with transplant kidney from living and cadaver donors, correlated its level to biochemical parameters of kidney function, and measured the level of oxidized albumin as a probe of oxidative stress using a new simple procedure. Interestingly, the activity of e-GST in transplant patients from cadaver donors (N = 153) is very high (11.7 U/gHb) compared to healthy subjects (N = 80) ( 5.6 U/gHb). Lower values were observed in transplant patients with kidney from living donors (N = 16) (9.8 U/gHb). Except for steroids, no correlation has been found with the immunosuppressive therapies and routine clinical and laboratory parameters. Also serum oxidized albumin, which reveals oxidative stress, is significantly higher in transplant patients from cadaver donors (53%) compared to that from living donors (36%). Overall, these data indicate that most of transplant kidneys from cadavers lost part of the detoxifying power against circulating toxins and suffer a relevant oxidative stress compared to those coming from living donors. A case report suggests that e-GST could represent a very early marker of incipient graft rejection. In conclusion, e-GST may be used to check the decline or maintenance of the kidney detoxification competence during post-transplantation course.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。