Hemin controls T cell polarization in sickle cell alloimmunization

血红素控制镰状细胞同种免疫中的 T 细胞极化

阅读:5
作者:Hui Zhong, Weili Bao, David Friedman, Karina Yazdanbakhsh

Abstract

Patients with sickle cell disease (SCD) often require transfusions to treat and prevent worsening anemia and other SCD complications. However, transfusions can trigger alloimmunization against transfused RBCs with serious clinical sequelae. Risk factors for alloimmunization in SCD remain poorly understood. We recently reported altered regulatory T cell (Treg) and Th responses with higher circulating Th1 (IFN-γ(+)) cytokines in chronically transfused SCD patients with alloantibodies as compared with those without alloantibodies. Because monocytes play a critical role in polarization of T cell subsets and participate in clearance of transfused RBCs, we tested the hypothesis that in response to the RBC breakdown product hemin, monocyte control of T cell polarization will differ between alloimmunized and non-alloimmunized SCD patients. Exogenous hemin induced Treg polarization in purified T cell/monocyte cocultures from healthy volunteers through the monocyte anti-inflammatory heme-degrading enzyme heme oxygenase-1. Importantly, hemin primarily through its effect on CD16+ monocytes induced an anti-inflammatory (higher Treg/lower Th1) polarization state in the non-alloimmunized SCD group, whereas it had little effect in the alloimmunized group. Non-alloimmunized SCD CD16+ monocytes expressed higher basal levels of heme oxygenase-1. Furthermore, IL-12, which contributed to a proinflammatory polarization state (low Treg/high Th1) in SCD, was dampened in hemin-treated stimulated monocytes from non-alloimmunized SCD patients, but not in the alloimmunized group. These data suggest that unlike alloimmunized patients, non-alloimmunized SCD CD16+ monocytes in response to transfused RBC breakdown products promote an anti-inflammatory state that is less conducive to alloimmunization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。