The adaptor protein APPL2 inhibits insulin-stimulated glucose uptake by interacting with TBC1D1 in skeletal muscle

衔接蛋白 APPL2 通过与骨骼肌中的 TBC1D1 相互作用来抑制胰岛素刺激的葡萄糖吸收

阅读:4
作者:Kenneth K Y Cheng, Weidong Zhu, Bin Chen, Yu Wang, Donghai Wu, Gary Sweeney, Baile Wang, Karen S L Lam, Aimin Xu

Abstract

Insulin stimulates glucose uptake by promoting the trafficking of GLUT4 to the plasma membrane in muscle cells, and impairment of this insulin action contributes to hyperglycemia in type 2 diabetes. The adaptor protein APPL1 potentiates insulin-stimulated Akt activation and downstream actions. However, the physiological functions of APPL2, a close homolog of APPL1, in regulating glucose metabolism remain elusive. We show that insulin-evoked plasma membrane recruitment of GLUT4 and glucose uptake are impaired by APPL2 overexpression but enhanced by APPL2 knockdown. Likewise, conditional deletion of APPL2 in skeletal muscles enhances insulin sensitivity, leading to an improvement in glucose tolerance. We identified the Rab-GTPase-activating protein TBC1D1 as an interacting partner of APPL2. Insulin stimulates TBC1D1 phosphorylation on serine 235, leading to enhanced interaction with the BAR domain of APPL2, which in turn suppresses insulin-evoked TBC1D1 phosphorylation on threonine 596 in cultured myotubes and skeletal muscle. Substitution of serine 235 with alanine diminishes APPL2-mediated inhibition on insulin-dependent TBC1D1 phosphorylation on threonine 596 and the suppressive effects of TBC1D1 on insulin-induced glucose uptake and GLUT4 translocation to the plasma membrane in cultured myotubes. Therefore, the APPL2-TBC1D1 interaction is a key step to fine tune insulin-stimulated glucose uptake by regulating the membrane recruitment of GLUT4 in skeletal muscle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。